
CDAT Utilities Reference 
Guide

Version 3.3

PCMDI Computational Support 

Program for Climate Model Diagnosis and 
Intercomparison (PCMDI) 
Lawrence Livermore National Laboratory
Livermore, CA 94550
United States of America

http://cdat.sf.net

11/1/02



Legal Notice

Copyright (c) 1999, 2000. The Regents of the University of California.
All rights reserved. 

Permission to use, copy, modify, and distribute this software for any pur-
pose without fee is hereby granted, provided that this entire notice is
included in all copies of any software which is or includes a copy or mod-
ification of this software and in all copies of the supporting documenta-
tion for such software.

This work was produced at the University of California, Lawrence Liver-
more National Laboratory under contract no. W-7405-ENG-48 between
the U.S. Department of Energy and The Regents of the University of Cal-
ifornia for the operation of UC LLNL. 

DISCLAIMER

This software was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Gov-
ernment nor the University of California nor any of their employees,
makes any warranty, express or implied, or assumes any liability or
responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represents that its use
would not infringe privately-owned rights. Reference herein to any spe-
cific commercial products, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Govern-
ment or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used
for advertising or product endorsement purposes.



CHAPTER 1 Climate Data Specific Utilities: The 
cdutil Package 1

Spatial Averaging, Area weighting, domain definition 1
Spatial averaging using the averager function 1
Computing Weights using area_weights. 6
Defining precise domains: 7

Temporal Averaging 8
Predefined time averaging functions 8
Creating Custom Seasons 9
Specifying time periods for climatologies. 9
Specifying Data Coverage Criteria 10

Preparing Datasets for Comparison (VariableConditioner and 
VariablesMatcher) 12

Introduction. 12
Description of supporting objects. 13
Examples 27



CHAPTER 2 General Utilities : The genutil 
Package 33

Statistics Functions 33
correlation 33
covariance 35
autocorrelation 36
autocovariance 37
laggedcorrelation 38
laggedcovariance 39
meanabsdiff 40
rms 41
std 42
variance 43
geometricmean 44
percentiles 44
median 45
linearregression 45

The xmgrace module 48
Additional convenience functions 48

minmax 48
grower 49
rgb2str 49
str2rgb 50



CHAPTER 3 User Contributed Packages 51

Reading ASCII text files (package asciidata) 51
Reading binary data (package binaryio) 52
Explicit Orthonormal Functions (package eof) 53
Computing L-moments (package lmoments) 54
Regridding using package regridpack 55
Using Spherepack (package sphere) 55
Computing Trends (package trends) 56
Reading data from an Oort file (package ort) 56
A grads like interface (package grads) 57
Interface to the ngmath library. (package ngmath) 57



Getting Started With CDAT 1

Spatial Averaging, Area weighting, domain definition

CHAPTER 1 Climate 
Data 
Specific 
Utilities: 
The cdutil 
Package

1.1 Spatial Averaging, Area weighting, domain 
definition

1.1.1 Spatial averaging using the averager function

Area averaging is one of the most common data reduction
procedures used in climate data analysis. The cdutil package has a
powerful area averaging function. The averager() function provides a
convenient way of averaging your data giving you control over the
order of operations (i.e which dimensions are averaged over first) and
also the weighting for the different axes. You can pass your own array
of weights for each dimension or use the default (grid) weights or
specify equal weighting.

Usage:

result = averager( V, axis=axisoptions, weights=weightoptions,
action=actionoptions, returned=returnedoptions,
combinewts=combinewtsoptions)



Climate Data Specific Utilities: The cdutil Package

2 Getting Started with CDAT

Options:

axisoptions

default = 0 first dimension in the data you pass to the function.
Restrictions: axisoptions has to be a string. You can pass
axis='tyx', or '123', or 'x (plev)' etc. the same way as in order=
options for variable operations EXCEPT that '...'(i.e Ellipses)  are
not allowed. If V is an array of type Numeric or MA, the axisop-
tions can only be of the form ‘123’.

weightoptions 'generate’ | ‘weighted’ | 'equal'  | ‘unweighted’ | array |
Masked Variable

Default = 
'weighted' for Transient Variables (MVs)
'unweighted' for MA or Numeric arrays.

Note that depending on the array being operated on by averager,
the default weights change!

‘weighted’ or ‘generate’ means the averaging uses the grid infor-
mation to generate weights for that dimension.

• 'equal' or ‘unweighted’ means use equal weights for all the
grid points in that axis.

• array an array of weights (of the same shape as the dimension
being averaged over or same shape as V) can be passed.

• Masked Variable means an MV of the same shape as V can be
passed.

Additional Notes on 'generate' or ‘weighted’ option: The
weights are generated using the bounds for the specified axis. For
latitude and longitude, the weights are calculated using the area
(see the cdms manual grid.getWeights() for more details) whereas
for the other axes weights are the difference between the bounds
(when the bounds are available). If the bounds are stored in the
file being read in, then those values are used. Otherwise, bounds



Getting Started With CDAT 3

Spatial Averaging, Area weighting, domain definition

are generated as long as cdms.setAutoBounds('on') is set. If
cdms.setAutoBounds() is set to 'off', then an Error is raised.

actionoptions 'average' | 'sum'

Default = 'average'. You can either return the weighted average or
the weighted sum of the data.

returnedoptions 0 | 1

Default = 0 implies sum of weights are not returned after averag-
ing operation. 1 implies the sum of weights after the average
operation is returned.

combinewtsoption = 0 | 1

Default = 0
0 implies weights passed for individual axes are not combined
into one weight array for the full variable V before performing
operation.
1 implies weights passed for individual axes are combined into
one weight array for the full variable before performing average
or sum operations. One-dimensional weight arrays or key words
of 'weighted' or 'unweighted' must be passed for the axes over
which the operation is to be performed. 
Additionally, weights for axes that are not being averaged or
summed may also bepassed in the order in which they appear. If
the weights for the other axes are not passed, they  are assumed to
be equally weighted.

Examples:

>>> import cdms, cdutil
>>> f = cdms.open(‘data_file_name’)
>>> result = cdutil.averager(f(‘var_name’), axis=’1’)
# extracts the variable ‘var_name’ from f 
# and averages over the dimension whose position is 1. 
# Since no other options are specified,
# defaults kick in i.e weights=’generate’ (same as 
# weights=’weighted’) and returned=0



Climate Data Specific Utilities: The cdutil Package

4 Getting Started with CDAT

# Some ways of using the averager are shown below.
# 
# A quick zonal mean calculation would be:
>>> V_zonal_ave = cdutil.averager(V, axis=’x’)
# In the above case, default weights option of
# ‘generate’ (or ‘weighted’) is implemented
#
# If you want to average first over the x (longitude) 
# dimension with area weighting and then over 
# y (latitude) with equal weighting, then you would:
>>> Vavg = cdutil.averager(V, axis=’xy’, \ 

weights=[‘generate’,’equal’])
# Similarly for equally weighted time averaging:
>>> cdutil.averager(V, axis=’t’, weights=’equal’)
#
>>> cdutil.averager(V, axis=’x’, weights=mywts)
# where mywts is an array of shape (len(xaxis)) 
# or shape(V)
#
>>> cdutil.averager(V, axis=’(lon)y’, weights=[myxwts, 

myywts])
# where myxwts is of shape len(xaxis) and 
# myywts is of shape len(yaxis)
#
>>> cdutil.averager(V, axis=’xy’, weights=V_wts)
# where V_wts is a Masked Variable of shape V
# or
>>> cdutil.averager(V, axis=’x’, weights=’equal’, 

action=’sum’)
# will return the equally weighted sum 
# over the x dimension or
>>> ywt = cdutil.area_weights(y)
>>> fractional_area= cdutil.averager(ywt, axis=’xy’,\
                     weights=[‘equal’,’equal’],\
                     action=’sum’)
# is a good way to compute the area fraction that the
# data y that is non-missing



Getting Started With CDAT 5

Spatial Averaging, Area weighting, domain definition

Note: When averaging data with missing values, extra care needs to
be taken. It is recommended that you use the default
weights='generate' option.   This uses cdutil.area_weights(V) to get
the correct weights to pass to the averager.

>>> cdutil.averager(V, axis=’xy’, weight=’generate’)
# The above is equivalent to:
>>> V_wts = cdutil.area_weights(V)
>>> result = cdutil.averager(V, axis=’xy’, weight=V_wts)
#
>>> result = cdutil.averager(V, axis=’xy’, 

weight=cdutil.area_weights(V))      

However, the area_weights function requires that the axis bounds are
stored or can be calculated. In the case that such weights are not
stored with the axis specifications (or the user desires to specify
weights from another source), the use of combinewts option can
produce the same results. In short, the following two are equivalent:

>>> xavg_1 = averager(X, axis = 'xy', weights = 
area_weights(X))

>>> xavg_2 = averager(X, axis = 'xy', weights = 
['weighted', 'weighted', 'weighted'], 
combinewts=1)

Where X is a function of x, y and a third dimension such as time or
level. In general, where the 'weighted' keyword appears above, it can
be substituted with arrays of weights .

The following example will help you see the averager() function in
context

>>> import cdms, cdutil
>>> f = cdms.open(‘file_name’)
# Extract the variable over the required domain
>>> t_nino3 = f(‘t’, latitude=(-5.,5.),\ 

longitude=(210.,270.))
# Average first over the longitude axis 



Climate Data Specific Utilities: The cdutil Package

6 Getting Started with CDAT

# (denoted by ‘x’) and then the latitude axis 
# (denoted by ‘y’)
>>> nino3_avg = cdutil.averager(t_nino3, axis=’xy’)

Axis options can also be specified by name such as axis = ‘(depth)’ or
by index such as axis = ‘20’ (note the numbers are enclosed in
quotes). By default, the appropriate area weights are generated from
the grid information and the result of the averaging is the area
weighted value. More control over the weights used is available. It is
possible to specify the weights used to average over the longitude and
latitude axes seperately.

>>> nino3avg2 = cdutil.averager(t_nino3, 
axis=’yx’,weights=[‘generate’,‘equal’])

In the above example, we averaged over the latitude axis first (using
generated weights) and then over the longitude axis (using equal
weights). The weights can be “equal” or “generate”(generates the
weights for the grid information contained in the variable) or any
array of numbers the user wishes to apply. 

1.1.2 Computing Weights using area_weights.

For most averaging applications, the weights used are critical
especially when there are missing data. The cdutil package provides
a way of generating the weights using grid information that is tied to
the variable. The averager function uses this to generate the weights
when the default averaging weights option kicks in. This function is
easily called for some variable ‘x’ in memory:

>>> gen_weights = cdutil.area_weights(x)

The resultant gen_weights is in the same shape as the variable x and
has the appropriate area weights set to missing values where data was
missing in x.



Getting Started With CDAT 7

Spatial Averaging, Area weighting, domain definition

1.1.3 Defining precise domains:

For many applications data extraction needs to be precise and
the ability to define the precise regions to extract is one of the
strengths of CDAT. This is provided by the cdutil region selector for
rectilinear grids (non-rectilinear grid support will be available in a
future release). The general form of this region definition is
illustrated best by the following example:

>>> import cdutil
# Using cdutil.region.domain to specify the NINO3 region
>>> NINO3 = cdutil.region.domain(latitude=(-5.,5.),\ 

longitude=(210.,270.)))

The above definition of NINO3 then allows the user to extract the
data so:

>>> import cdms
>>> f = cdms.open(‘t_file.nc’)
>>> t_nino3_exact = f(‘t’, NINO3)

The data extracted above will have the bounds and weights of the
region extracted precisely. Some commonly used domains have been
pre-defined for convenience. They are:

NH | NorthernHemisphere 

SH | SouthernHemisphere

Tropics : latitude extends from -23.4 to 23.4

NPZ | AZ | ArcticZone : latitude extends from 66.6N to 90.0N

SPZ | AAZ | AntarcticZone : latitude extends from 90.0S to 66.6S



Climate Data Specific Utilities: The cdutil Package

8 Getting Started with CDAT

1.2 Temporal Averaging

1.2.1 Predefined time averaging functions

Averaging over time is a special problem in climate data
analysis. The cdutil package pays special attention to this issue to
make the extraction of time averages and climatologies simple. Apart
from functions that enable easy computation of annual, seasonal and
monthly averages and climatologies, one can also define seasons
other than those already available and specify criteria for data
availability and temporal distribution to suit individual needs. 

Note: It is essential that the data have an appropriate axis designated
as the “time” axis. In addition to this, the results depend on the time
axis having correctly set “bounds”. If “bounds” are not stored with
the data in files,  default “bounds” are generated by the data
extraction steps in cdms. However, they are not always correct. The
user must take care to verify that the bounds are set correctly. Since
the default time bounds set by cdms puts the time point in the middle
of the month, (for example time axis values of 0, 1,.... would put the
bounds at [-0.5, 0.5], [0.5, 1.5].... etc.), the user can make use of the
setTimeBoundsMonthly function. To use this method to set the bounds
for monthly data:

>>> import cdutil, cdms
>>> f = cdms.open(‘some_monthly_data.nc’)
>>> x = f(‘var’)
>>> cdutil.setTimeBoundsMonthly(x)
# The default action of the setTimeBoundsMonthly 

function assumes that the time point is at the 
beginning of the month. To compute bounds assuming 
that the time point at the end of the month,

>>> cdutil.setTimeBoundsMonthly(x, 1)

The predefined time averaging periods are:

• JAN, FEB, MAR,  ...., DEC (months)



Getting Started With CDAT 9

Temporal Averaging

• DJF, MAM, JJA, SON (seasons)

• YEAR (annual means)

• ANNUALCYCLE (monthly means for each month of the year)

• SEASONNALCYCLE (means for the 4 predefined seasons)

Some simple examples of time averaging operations are shown here.

>>> import cdutil
# The individual DJF (December-January-February)
# seasons are extracted using
>>> djfs = cdutil.DJF(x)
# To compute the DJF climatology of a variable x
>>> djfclim = cdutil.DJF.climatology(x)
# To extract DJF seasonal anomalies (from climatology) 
>>> djf_anom = cdutil.DJF.departures(x)
# The monthly anomalies for x are computed by:
>>> x_anom = cdutil.ANNUALCYCLE.departures(x)

1.2.2 Creating Custom Seasons

You can even create your own “custom seasons” beyond the
pre-defined seasons listed above. For example: 

>>> JJAS = cdutil.times.Seasons(‘JJAS’)

1.2.3 Specifying time periods for climatologies.

So far we have seen the way to compute the means,
climatologies, and anomalies for the entire length of the time-series.
The typical application may require specified time intervals over
which climatologies are computed and used in calculating departures.
For example, to compute the DJF climatology for the time period
1979-1988 we would do the following:

>>> import cdtime



Climate Data Specific Utilities: The cdutil Package

10 Getting Started with CDAT

>>> start_time = cdtime.comptime(1979)
>>> print 'start_time = ', start_time
>>> end_time = cdtime.comptime(1989)
>>> print 'end_time = ', end_time

Note that we created the time point 'end_time' at the begining of 1989
so we can select all the time between 'start_time' and 'end_time' but
not including 'end_time' by specifying the option 'co' - shorthand for
'c'losed at start_time and 'o'pen at end_time. More options and details
about them can be found in Climate Data Management System
(cdms.pdf).

>>> djfclim = cdutil.DJF.climatology(x(time= \ 
(start_time, end_time, 'co')))

Now that we have our climatology over the desired period we can to
compute anomalies over the full period relative to that climatology.

>>> djfdep2 = cdutil.DJF.departures(s, ref=djfclim) 

1.2.4 Specifying Data Coverage Criteria

The real power of these functions is in the ability to specify
minimum data coverage and to also be able to specify the distribution
(both in the temporal sense) which are required for the averages to be
computed. The default behaviour of the functions that compute
seasonal averages, climatologies etc. is to require that a minimum of
50% of the data be present. Now let's say you like to extract DJF but
without restricting it to 50% of the data being present. You would do:

>>> djfs = cdutil.DJF(avg, criteriaarg=[0., None])

The above statement comutes the DJF average with "criteriaarg"
(passed as a list) which has 2 arguments. 



Getting Started With CDAT 11

Temporal Averaging

• The first argument represents the minimum fraction of time that is
required to compute the seasonal mean. So you can pass a
fractional value between 0.0 and 1.0 (including both extremes) or
even a representation such as 3.0/4.0 (in case you need at least 3
out of 4 months of data in the case of the average JJAS we defined
previously). 

• The second argument in the criteriaarg is "None". This implies no
"centroid function" is used. In other cases this argument represents
the maximum value of the "centroid function".A value between 0
and 1 represents the spread of values across the mean time. The
centroid value of 0.0 represents a full even distribution of data
across the time interval. For example, if you are considering the
DJF average, then if data is available for Dec, Jan and Feb months
then the centroid is 0.0. On the other hand, the following criteria
will "mask"(i.e ignore) a DJF season if there is only a december
month with data (and therefore has a centroid value of 1.0).
Therefore any seasons resulting in centroid values above 0.5 will
result in missing values!

>>> djfs = cdutil.DJF(avg, criteriaarg = [0., .5])  

In the case of computing an annual mean, having data only in Jan and
Dec months leads to a centroid value of 0 for the regular centroid, and
the resulting annual mean for the year is biased toward the winter. In
this situation, you should use a cyclical centroid where the circular
nature of the year is recognised and the centroid is calculated
accordingly. Here are some examples of typical usage:

1) Default behaviour i.e criteriaarg=[0.5, None]

>>> annavg_1 = cdutil.YEAR(s_glavg)

2) Criteria to say compute annual average for any number of months.

>>> annavg_2 = cdutil.YEAR(s_glavg, criteriaarg = 
[0.,None])



Climate Data Specific Utilities: The cdutil Package

12 Getting Started with CDAT

3) Criteria for computing annual average based on the minimum
number of months (8 out of 12).

>>> annavg_3 = cdutil.YEAR(s_glavg, \
          criteriaarg = [8./12., None])

4) Same criteria as in 3, but we account for the fact that a year is
cyclical i.e Dec and Jan are adjacent months. So the centroid is
computed over a circle where Dec and Jan are contiguous.

>>> annavg_4 = cdutil.YEAR(s_glavg, \
       criteriaarg = [8./12., 0.1, 'cyclical'])

So far we have the annual means calculated using various criteria.
Now if we wish to compute the climatological annual mean, we can
average the individual annual means. However, we can apply more
criteria to the calculation of that annual mean climatology. Here we
simply require 60% of the years to be present, and a criteria on the
temporal distribution (i.e the centroid = 0.7) to make sure all of the
annual means are not clustered at the end of the record.

>>> annavg_clim = cdutil.YEAR.average(annavg_4,\ 
criteriaarg =[.6,.7])

The tutorial file times_tutorial.py has detailed examples of time
averaging in action. Further documentation is available on the cdat
home page.

1.3 Preparing Datasets for Comparison 
(VariableConditioner and VariablesMatcher)

1.3.1 Introduction.

The VariablesMatcher is defined to facilitate comparisons of
two different variables by preprocessing them and ensuring that they
are expressed in the same units and are placed on a common grid.



Getting Started With CDAT 13

Preparing Datasets for Comparison (VariableConditioner and VariablesMatcher)

Preprocessing includes selection of the spatial domain and time-
period and provides for various masking and regridding options.  We
first describe the supporting objects because they may be needed by
VariablesMatcher.

1.3.2 Description of supporting objects.

The VariablesMatcher relies on three different kinds of
supporting objects: the VariableConditioner, the WeightedGridMaker,
and the WeightsMaker.  The VariableConditioner can modify a field
in various ways (e.g., applying masks, mapping it to a new grid,
applying scale factors and adding a constant to it, which is useful in
transforming the units).  The WeightsMaker defines a mask, and the
WeightedGridMaker defines a grid (and possibly associates a
WeightsMaker object with it).  The WeightsMaker object will be
described first, because it may be needed by the other two.  The
WeightedGridMaker will be described next because it may be needed
by the VariableConditioner.

WeightsMaker Object.

Definition

The WeightsMaker generates a transient variable containing
fractions (between 0 and 1), with the value 0 identifying which cells
should be excluded from consideration (i.e., masked out). In
calculating the mean value of a variable, these fractions are typically
used to "weight" grid cells (in addition to possibly weighting by the
area of the grid cell).  In the simplest case, only 0's and 1's will be
generated, indicating which cells will be masked or not. 

The WeightsMaker is constructed as follows:  

MM = cdutil.WeightsMaker( source=sourceoptions, var=varoptions,
actions=actionsoption, values=valuesoption,
combiningActions=combiningActionsoption)



Climate Data Specific Utilities: The cdutil Package

14 Getting Started with CDAT

Options:

sourceoptions

Default is None. This is either a file name or a transient variable. 

varoptions

Default is None. This is the name of the variable that is needed
from the file specified in the "source" argument (except when
"source" is a transient variable, in which case this argument is
ignored).

actionsoption 

Default is None. This is a list (or a tuple) of functions that will be
used by the WeightsMaker to create the weights. Each of these
functions must accept two arguments: the first argument is an
array (of the same shape as the mask), and the second is a scalar
or a tuple. For example, "actions=MV.equal" will generate
weights with 1's assigned to cells where elements of the array
equal to the scalar specified in values (see below) and 0's assigned
to all other cells.  By default the array passed to the function is the
one defined by "source," but an alternative "source" can be passed
at the time of the mask creation (see the "get" and "values" expla-
nations below). The default action (if "actions" is set to None) is:
MV.equal.

valuesoption 

Default is None. This is a list (with the same number of elements
as the "actions" list) containing the values that will be passed to
each function contained in the "actions" list. If "values" is defined
as a list or tuple whose first element is 'input', then the variable
passed to action is not the one referred to by "source" but the one
sent to the "get" function (i.e. when the function is executed). 



Getting Started With CDAT 15

Preparing Datasets for Comparison (VariableConditioner and VariablesMatcher)

combiningActionsoption 

Default is None. This is a list (with one element less than the
number of elements in the "actions" list) containing functions
used to combine the actions of the functions specified in the
"actions" list. There is no need to define combiningActions when
there is only one "action" defined. The first "combining-action"
will be used to produce a new temporary mask representing the
result of combining the first and second masks generated by the
functions specified in the "actions" list.  This result will be used
subsequently with the result of action 3 and the second  "combin-
ingAction", and so on. The default logical action is MV.multiply.

Note that when calling the get function of the WeightsMaker object,
the variable being processed may be passed, allowing a mask to be
generated based on the data itself.  (If, for example, the
WeightsMaker is passed values=["input", 273.15] and
actions=[MV.less], temperatures below freezing would be masked.) 

Usage

The mask defined by the WeightsMaker object MM can be obtained
as follows:

>>> mask = MM.get()

or, alternately,

>>> mask=MM() or mask=MM(my-variable)

Remember that if a variable (e.g., my-variable) is passed as an
argument of MM, then this variable would be "acted on" by a
function given by the "actions" argument of WeightsMaker only if the
first element of the corresponding "values" item is "input".
Otherwise, the variable acted on is defined by "source".



Climate Data Specific Utilities: The cdutil Package

16 Getting Started with CDAT

Let's define a mask that will weight each grid cell by the land fraction
and then mask out areas where the values of a user defined (at
runtime) variable are greater than a threshold T.

>>> File='string-pointing-to-the-fraction-of-land-
expressed-as-a-percent'

>>> T=a-threshold-value
>>> MM=cdutil.WeightsMaker(source=File,var='sftlf')
>>> MM.actions=[MV.divide,MV.greater]
>>> MM.values=[100,["input",T]]
>>> MM.combiningActions=[MV.multiply]
# here would be some line of code creating a variable V
>>> M1=MM(V)
# This retrieved the first mask, generating weights 

equal to the fraction of land in each cell, but 
masking cells where values of V are greater than 
T)

>>> M2=MM(2.*V)
# Retrieved another mask, which should be different, 

since now area where 2*V  is greater than T are 
masked.

WeightedGridMaker Object.

Definition

The WeightedGridMaker generates a cdms grid object (see
cdms documentation for a description) and may also associate a
WeightsMaker object with that grid.  The WeightedGridMaker object
may be used by the VariableConditioner object (see below) to define
a "target" grid to which the variable will be mapped.  The
WeightedGridMaker must be either provided with a cdms grid object
or with information needed to generate a grid. 

The WeightedGridMaker is constructed as follows:  



Getting Started With CDAT 17

Preparing Datasets for Comparison (VariableConditioner and VariablesMatcher)

MGM = cdutil.WeightedGridMaker( source=sourceoption,
var=varoption, type=typeoption, nlat=nlatoption, flat=flatoption,
dellat=dellatoption, nlon=nlonoption, flon=flonoption,
dellon=dellonoption, WeightsMaker=WeightsMakeroption )

Options:

sourceoption 

Default is None. This is a cdms grid object or a file name (in
which case the keyword "var" must be defined). Other keywords
(except "var" and "WeightsMaker") will be ignored if "source" is
a file name.

varoption 

Default is None. This is the name of the variable that is needed
from the file specified in the "source" argument (except when
"source" refers directly to a grid object, in which case this argu-
ment is ignored).

typeoption 

Default is 'uniform'. This is the type of grid that will be generated.
Options include: 'uniform' (equally spaced), 'gaussian' (for use
with spectral models), and 'equal' (for latitude spacing giving
equal area grid cells as in the lmd5 model).  This keyword will be
ignored if "source" is a file name.

nlatoption 

Default is None. This is the number of latitudes spanning the
domain (which is ignored if "source" is a file name).

flatoption 



Climate Data Specific Utilities: The cdutil Package

18 Getting Started with CDAT

Default is None. This is the location of the first latitude (which is
ignored if "source" is a file name or if "type" is 'gaussian' or
'equal').

dellatoption 

Default is None. This is the latitude spacing (which is ignored if
"source" is a file name or if "type" is 'gaussian' or 'equal').

nlonoption

Default is None. This is the number of longitudes spanning the
domain (which is ignored if "source" is a file name).

flonoption 

Default is None. This is the location of the first longitude (which
by default is set to 0.0 but is ignored if "source" is a file name).

dellonoption 

Default is None. This is the longitude spacing (which is ignored if
the "source" is a file name).

WeightsMakeroption

 Default is None. This is a WeightsMaker object that should
occupy the same grid as that returned by WeightedGridMaker.

Usage

>>> MGM=cdutil.WeightedGridMaker(grid=mygrid)
>>> MGM=cdutil.WeightedGridMaker(nlat=64, 

type='gaussian', flon=-180., WeightsMaker=mymask)
>>> MGM=cdutil.WeightedGridMaker(nlat=50, type='equal', 

nlon=64, flon=2.8125, dellon=5.625)
>>> MGM=cdutil.WeightedGridMaker(nlat=18, dellat=10., 



Getting Started With CDAT 19

Preparing Datasets for Comparison (VariableConditioner and VariablesMatcher)

flat=-85, nlon=36, dellon=10., flon=0.)

Arguments can also be set after construction.  For example:

>>> MGM=cdutil.WeightedGridMaker()
>>> MGM.longitude.n=36
>>> MGM.longitude.first=0.
>>> MGM.longitude.delta=10.
>>> MGM.latitude.n=18
>>> MGM.latitude.first=-85.
>>> MGM.latitude.delta=10.
>>> MGM.latitude.type='uniform'

To retrieve the grid object, use the "get" method:

>>> g=MGM.get() 

or, alternately,

>>> g=MGM()

The WeightsMaker object associated with the grid can be obtained as
follows:

>>> gm = MGM.WeightsMaker()

Note that if a WeightsMaker object has not been passed to the
constructor, then the grid object returned by MGM.WeightsMaker()
will be: None.

VariableConditioner Object 

Definition

The VariableConditioner constructor must be provided either
with a transient variable or with information that will be used to
define a masked variable.  Optional, additional information may be
provided to indicate how the data should be mapped to a new grid,



Climate Data Specific Utilities: The cdutil Package

20 Getting Started with CDAT

what masks should be applied, and how to scale and offset the data
(to transform, for example, to alternative units).  

The VariableConditioner is constructed as follows:

VC=cdutil.VariableConditioner(source, var=varoption,
cdmsArguments=cdmsArgumentsoption,
cdmsKeywords=cdmsKeywordsoption,
WeightsMaker=WeightsMakeroption,
WeightedGridMaker=WeightedGridMakeroption,
offset=offsetoption, slope=slopeoption, id=idoption)

Where:

source 

This is either a file name or a transient variable.  If an array is
passed, a second associated array may also be passed (in which
case source is a tuple), which contains the fraction of each grid
cell for which the data value applies.  This fraction will be used if
the variable is regridded (see below).

Options:

varoption 

Default is None. This is the name of the variable that is needed
from the file specified in the "source" argument (except when
"source" refers directly to a variable, in which case this argument
is ignored).

cdmsArgumentsoption 

Default is []. This is a tuple or list of optional arguments used
when retrieving a variable with cdms. For example, cdmsArgu-
ments=(cdutil.region.NH) specifies that data should be retrieved



Getting Started With CDAT 21

Preparing Datasets for Comparison (VariableConditioner and VariablesMatcher)

from the Northern Hemisphere only).  See the cdms documenta-
tion for more information. 

cdmsKeywordsoption 

Default is {}. This is a dictionary defining "keyword:value" pairs
used when retrieving a variable with cdms.  For example, cdms-
Keywords= {'latitude:(-90.0, 0.0)} specifies that data should be
retrieved from the Southern Hemisphere only.  See the cdms doc-
umentation for more information.

WeightsMakeroption 

Default is None. This is a WeightsMaker object that should be
applied to the masked variable (before any regridding).

WeightedGridMakeroption 

Default is None. This is a WeightedGridMaker object that defines
the target grid to which the data should be mapped.  (Note, that if
a WeightsMaker is associated with the WeightedGridMaker
object, then that mask will be applied to the data after regridding.)

offsetoption and slopeoption 

The default values are 0.0 and 1.0 respectively. These are used to
change units of the variable by multiplying the data by "slope"
and adding "offset" to the result.

idoption 

Default is None. This is a string that can be used to identify your
VariableConditioner object, but it is purely informational and not
used otherwise.

Usage



Climate Data Specific Utilities: The cdutil Package

22 Getting Started with CDAT

VC=cdutil.VariableConditioner( '/pcmdi/obs/mo/tas/jones_amip/
tas.jones_amip.ctl', var='tas', id='JONES')

Arguments can also be set after construction.  For example:

>>> ref='/pcmdi/obs/mo/tas/jones_amip/
tas.jones_amip.ctl' 

>>> VC = cdutil.VariableConditioner(ref)
>>> VC.var='tas'
>>> VC.id='JONES'

To retrieve the modified variable (i.e., generate a masked variable),
use the "get" method:

>>> data = VC.get(returnTuple=0)

or, alternately,

>>> data = VC(returnTuple=0)

One may additionally wish to retrieve the fraction of each target grid
cell where data existed on the original grid (i.e., where data had not
been masked).  If, for example, 20% of the target grid cell were
masked on the original grid (or were flagged as missing data), this
fraction is set to 0.8.  If the target grid cell itself is masked, this
fraction is set to 0.  To retrieve these fractions along with the
modified variable itself, the keyword "returnTuple" is set to 1 (or
omitted, since 1 is the default):

>>> data, frac=VC()

The order that operations are executed by the "get" method of the
VariableConditioner object is as follows:

1. If necessary, open the file and retrieve the specified variable (or 
process the passed "masked variable") with the constraints implied 
by the "cdmsArguments" and "cdmsKeywords."   



Getting Started With CDAT 23

Preparing Datasets for Comparison (VariableConditioner and VariablesMatcher)

2. If the "WeightsMaker" keyword is defined, mask the data.  Note 
that after being defined by the WeightsMaker object, the mask 
may be "post-processed" by VariableConditioner to make it con-
form to the dimensions of the data being "conditioned".  For exam-
ple, a subdomain may be extracted using information supplied in 
cdmsKeywords and cdmsArguments, or the mask may be 
expanded by copying itself to fill a dimension (e.g., time or level) 
that is found in the data, but not the mask.

3. If the "WeightedGridMaker" keyword is defined, map the data to 
the target grid returned by the WeightedGridMaker, and, if 
defined, apply the associated target grid mask. If required by an 
'input' actions specification, the variable (in its latest state) will be 
used by the WeightsMaker.  Again (as in step 2), post-processing 
will be applied on the returned mask when necessary.

4. Apply the "slope" and "offset" transformation unless the slope 
equals 1.0 and the offset equals 0.0.

VariablesMatcher Object. 
The VariablesMatcher object can be used to facilitate

comparison of two different variables. It places these variables on a
common grid, allows for application of masks, and optionally
indicates the fraction of each grid cell for which information was
available (i.e., not missing) when the field was put on its final grid.
The VariablesMatcher object processes two VariableConditioner
objects (which represent the two variables to be compared).  It can
also apply a supplied external-data mask and map everything to a
new grid. The VariablesMatcher object is constructed as follows:

VM=cdutil.VariablesMatcher(variableConditioner1=variableConditi
oner1option, variableConditioner2=variableConditioner2option,
cdmsArguments=cdmsArgumentsoption,
cdmsKeywords=cdmsKeywordsoption,



Climate Data Specific Utilities: The cdutil Package

24 Getting Started with CDAT

externalVariableConditioner=externalVariableConditioneroption,
WeightedGridMaker=WeightedGridMakeroption)

Options:

variableConditioner1option 

Default is None. This can be a VariableConditioner object or a
file name or a transient variable (from which a  VariableCondi-
tioner will be constructed).  It may also be a tuple comprising a
transient variable plus a fraction associated with each cell (which
will be used in constructing "weights"). If variableConditioner1 is
a file name, then the user must also define the name of the vari-
able (e.g., VM.variableConditioner1.var='tas'). 

variableConditioner2option 

Default is None. This is a second field treated just like
variableConditioner1 except if after all processing is completed,
variable 2 is not on the same grid as variable 1, then it will be
mapped to variable 1's grid.

cdmsArgumentsoption 

Default is []. This is a tuple of optional arguments used when
retrieving a variable with cdms. For example, cdmsArgu-
ments=(cdutil.region.NH) specifies that data should be retrieved
from the Northern Hemisphere only).  See the cdms documenta-
tion for more information.  The cdmsArguments set here will
replace all arguments that might be set for individual Variable-
Conditioner objects (i.e., "1", "2" and "external").

cdmsKeywordsoption 

Default is {}. This is a dictionary defining "keyword:value" pairs
used when retrieving a variable with cdms.  For example, cdms-
Keywords= {'latitude:(-90.0, 0.0)} specifies that data should be



Getting Started With CDAT 25

Preparing Datasets for Comparison (VariableConditioner and VariablesMatcher)

retrieved from the Southern Hemisphere only.  See the cdms doc-
umentation for more information. The cdmsKeywords set here
will be appended to or take the place of those that might be set for
individual VariableConditioner objects (i.e., "1", "2" and "exter-
nal"). 

externalVariableConditioneroption 

Default is None. This is optional and is used to mask both vari-
able 1 and variable 2 with its own mask. Variable 1 and variable 2
are mapped to the external variable grid before applying the
mask.  The external variable weights are applied (except where
the weights associated with the variables are zero)  The external-
VariableConditioner is generally not needed unless an external
time-varying mask is to be applied.

WeightedGridMakeroption 

Default is None. This is an optional WeightedGridMaker object
that defines the target grid to which variable 1 and variable 2
should be mapped as a last step.  (Note, that if a WeightsMaker is
associated with the WeightedGridMaker object, then the mask
will be applied to the data after regridding.)

Usage:

To retrieve the modified variable (i.e., generate a masked variable),
use the "get" method:

>>> variable1, variable2 = VM.get(returnTuple=0)

or, alternately,

>>> variable1, variable2 = VM(returnTuple=0)

One may additionally wish to retrieve the fraction of each target grid
cell where data existed on the original grid (i.e., where data had not
been masked).  If, for example, 20% of the target grid cell has been



Climate Data Specific Utilities: The cdutil Package

26 Getting Started with CDAT

masked on the original grid (or has been flagged as missing data), this
fraction is set to 0.8.  If the target grid cell itself is masked, this
fraction is set to 0.  To retrieve these fractions along with the
modified variable itself, the keyword "returnTuple" is set to 1 (or
omitted, since 1 is the default):

>>> (variable1, frac1), (variable2, frac2) = VM()

The order that operations are executed by the "get" method of the
VariablesMatcher object is as follows:

1. Append or replace cdms arguments/keywords for 
variableConditioner1, variableConditioner2, and, if defined, the 
externalVariableConditioner.

2. Get the variableConditioner1 and variableConditioner2.

3. If the length of the time dimensions for the two variables are dif-
ferent, extract the sub-domain the two have in common.

4. If  variable 1 and variable 2 do not have the same number of  
dimensions, make them consistent by  adding missing dimensions.  
This will be done only in the case of missing singleton dimensions 
prevents problems with dummy dimensions.  If an externalVari-
ableConditioner is defined, get the external variable.
a. Get only time-slices in common with variables 1 and 2.  
b. Map both variable 1 and variable 2 to the grid of the external
variable.
c. Apply to variables 1 and 2 the mask implied by "missing val-
ues" found in the external variable data and/or the mask associ-
ated with the external variable.

5. If the "WeightedGridMaker" keyword is defined, map the data to 
the target grid, and apply the associated target grid mask (if 
defined). If required by an 'input' actions specification, the variable 
(in its latest state) will be used by the  WeightsMaker.  As in step 
2) of section 2.3,  post-processing will be applied on the returned 
mask when necessary.



Getting Started With CDAT 27

Preparing Datasets for Comparison (VariableConditioner and VariablesMatcher)

6. If variable 1 and variable 2 are at this point on different grids, map 
variable 2 to the grid of variable 1.  No masking information is 
transferred from one variable to the other here.

1.3.3 Examples

A simple example

In this example we retrieve data for 2 different variables over the
maximum common period, and put them both on a 10x10 degree
grid.

>>> import cdutil
# Reference
>>> ref='/pcmdi/obs/mo/tas/jones_amip/

tas.jones_amip.ctl'
>>> Ref=cdutil.VariableConditioner(ref)
>>> Ref.var='tas'
>>> Ref.id='JONES'# optional
# Test
>>> tst='/pcmdi/obs/mo/tas/rnl_ncep/tas.rnl_ncep.ctl'
>>> Tst=cdutil.VariableConditioner(tst)
>>> Tst.var='tas'
>>> Tst.id='NCEP' #optional
# Final Grid
>>> FG=cdutil.WeightedGridMaker()
>>> FG.longitude.n=36
>>> FG.longitude.first=0.
>>> FG.longitude.delta=10.
>>> FG.latitude.n=18
>>> FG.latitude.first=-85.
>>> FG.latitude.delta=10.
# Now creates the compare object.
>>> c=cdutil.VariablesMatcher(Ref, Tst, 

WeightedGridMaker=FG)
# And get it (3 different ways).
>>> (ref, ref_frac), (test, test_frac) = c.get()
>>> ref, test = c.get(returnTuple=0)
>>> ref, test = c(returnTuple=0)



Climate Data Specific Utilities: The cdutil Package

28 Getting Started with CDAT

A more complicated example

In this example we 

• retrieve NCEP and ECMWF for the year 1981,

• mask the land area of both fields,

• map both fields to the grid of an external data mask (the JONES
variable) and apply the mask,

• map the fields to a 10x10 degree grid

• mask the land area according to a 10x10 degree land/sea mask.

Try skipping the final step and note the difference. [Tip: to do so,
simply change the definition of FG to:
FG=cdutil.WeightedGridMaker(fgmask, var='sftlf') ]

>>> import cdutil, vcs, sys
# First let's creates the mask (it is the same for NCEP 

and ECMWF since they are on the same grid).
>>> refmsk='/pcmdi/obs/etc/sftl.25deg.ctl'
>>> M=cdutil.WeightsMaker(refmsk, var='sftl', 

values=[1.])
# Define the "Reference" dataset
>>> ref='/pcmdi/obs/mo/tas/rnl_ecm/tas.rnl_ecm.sfc.ctl'
>>> Ref=cdutil.VariableConditioner(ref, WeightsMaker=M)
>>> Ref.var='tas'
>>> Ref.id='ECMWF'
# Define the "test" dataset
>>> tst='/pcmdi/obs/mo/tas/rnl_ncep/tas.rnl_ncep.ctl'
>>> Tst=cdutil.VariableConditioner(tst, WeightsMaker=M)
>>> Tst.var='tas'
>>> Tst.id='NCEP'
# Define the External data mask
>>> ext='/pcmdi/obs/mo/tas/jones_amip/

tas.jones_amip.ctl'



Getting Started With CDAT 29

Preparing Datasets for Comparison (VariableConditioner and VariablesMatcher)

>>> EV=cdutil.VariableConditioner(ext)
>>> EV.var='tas'
>>> EV.id='JONES'
# Define the Final Grid
# We need a mask for the final grid
>>> fgmask='/pcmdi/staff/longterm/doutriau/ldseamsk/

amipII/pcmdi_sftlf_10x10.nc'
>>> M2=cdutil.WeightsMaker(source=fgmask, var='sftlf', 

actions=MV.greater, values=[50.])
>>> FG=cdutil.WeightedGridMaker(fgmask, var='sftlf', 

WeightsMaker=M2)
# Now create the compare object
>>> c=cdutil.VariablesMatcher(Ref, Tst, 

WeightedGridMaker=FG, 
externalVariableConditioner=EV)

>>> c.cdmsKeywords={'time':('1981','1982','co')}
# And get it
>>> (ref, reffrc), (test, tfrc) = c()
>>> print 'Shapes:', test.shape, ref.shape
# Plot the difference
>>> x=vcs.init()
>>> x.plot(test-ref)
# Wait for user to press return
>>> print "Press enter"
>>> sys.stdin.readline()

A very complicated example

This example shows MOST of the options and power of
VariablesMatcher. In this example we

• retrieve NCEP and ECMWF for the year 1981,

• mask the land area of both fields (on their original grids),

• map ECMWF data to a T63 grid and NCEP data to a T42 grid,

• mask cells where the temperatures are greater than 280K and less
than 300K  (two different ways of imposing the mask are
illustrated),



Climate Data Specific Utilities: The cdutil Package

30 Getting Started with CDAT

• map both fields to the grid of an external data mask (the JONES
variable) and apply the mask; also mask land areas according to a
user-supplied land/sea mask on the JONES grid.

• map the fields to a 10x10 degree grid

• mask the land area according to a 10x10 degree land/sea mask

• select only the Northern Hemisphere region using a defined
"selector" (see cdutil.region documentation).

>>> import cdutil, MV, vcs, sys
# First let us define the mask (it is the same for NCEP 

and ECMWF since they are on the same grid)
>>> refmsk='/pcmdi/obs/etc/sftl.25deg.ctl'
>>> M = cdutil.WeightsMaker(refmsk, var='sftl', 

values=[1.])
# Define the "Reference" dataset
>>> ref='/pcmdi/obs/mo/tas/rnl_ecm/tas.rnl_ecm.sfc.ctl'
>>> Ref=cdutil.VariableConditioner(ref, WeightsMaker=M)
>>> Ref.var='tas'
>>> Ref.id='ECMWF'
# Define the grid for this variable to be T63 and mask 

the data where temperatures are between 280K and 
300K.  Note that the final grid is defined to be 
the same as 'sftlf' contained in file 
pcmdi_sftlf_T63.nc, but the data contained in this 
file is ignored.

>>> ECMWFGrid=cdutil.WeightedGridMaker(source='/pcmdi/
staff/longterm/doutriau/ldseamsk/amipII/
pcmdi_sftlf_T63.nc',var='sftlf')

>>> ECMWFinalMask=cdutil.WeightsMaker()
>>> ECMWFinalMask.values = 

[('input',280.),('input',300.)]
>>> ECMWFinalMask.actions=[MV.greater, MV.less]
>>> ECMWFinalMask.combiningActions=[Mv.logical_and]
# Associate the mask with the grid
>>> ECMWFGrid.WeightsMaker=ECMWFinalMask
>>> # Now associates the grid with the variable.
>>> Ref.WeightedGridMaker=ECMWFGrid



Getting Started With CDAT 31

Preparing Datasets for Comparison (VariableConditioner and VariablesMatcher)

# Define the "test" dataset
>>> tst='/pcmdi/obs/mo/tas/rnl_ncep/tas.rnl_ncep.ctl'
>>> Tst=cdutil.VariableConditioner(tst, WeightsMaker=M)
>>> Tst.var='tas'
>>> Tst.id='NCEP'
# The final grid for this variable will be T42, masked 

where temperatures are between 280K and 300K
>>> NCEPGrid=cdutil.WeightedGridMaker()
>>> NCEPGrid.latitude.n=64
>>> NCEPGrid.latitude.type='gaussian'
# This time let's create a function to return the mask
>>> def myMakeMask(array, range):
    """Returns the input array masked where the values 

are between range[0] and range[1]"""
    m1=MV.greater(array, range[0]) # mask where it is 

greater than the 1st value
    m2=MV.less(array, range[1]) # mask where it is less 

than the 2nd value
    return MV.logical_and(m1,m2)
# And associate the mask with the grid
>>> 

NCEPGrid.WeightsMaker.values=[('input',(280.,300.
))]

>>> NCEPGrid.WeightsMaker.actions=[myMakeMask]
# Now associates the grid with the variable.
>>> Tst.WeightedGridMaker=NCEPGrid
# define an External variable.  Where this variable has 

missing data, the reference and test fields will 
also be masked.

>>> ext='/pcmdi/obs/mo/tas/jones_amip/
tas.jones_amip.ctl'

>>> extmask='/pcmdi/amip/fixed_tmp/sftlf/sftlf_gla-
98a.nc'

>>> EMask=cdutil.WeightsMaker(source=extmask, 
var='sftlf')

>>> ED=cdutil.VariableConditioner(ext, 
WeightsMaker=EMask)

>>> ED.var='tas'
>>> ED.id='JONES'
# Define the Final Grid
# We need a mask for the final grid



Climate Data Specific Utilities: The cdutil Package

32 Getting Started with CDAT

>>> fgmask='/pcmdi/staff/longterm/doutriau/ldseamsk/
amipII/pcmdi_sftlf_10x10.nc'

>>> M2=cdutil.WeightsMaker(source=fgmask, var='sftlf', 
values=[100.])

>>> FG=cdutil.WeightedGridMaker(WeightsMaker=M2)
>>> FG.longitude.n=36
>>> FG.longitude.first=0.
>>> FG.longitude.delta=10.
>>> FG.latitude.n=18
>>> FG.latitude.first=-85.
>>> FG.latitude.delta=10.
# Now creates the compare object
>>> c=cdutil.VariablesMatcher(Ref, Tst, 

WeightedGridMaker=FG, 
externalVariableConditioner=ED)

>>> c.cdmsKeywords={'time':('1981','1982','co')}
# define a "selector" to obtain only the N. Hemisphere
>>> c.cdmsArguments=[cdutil.region.NH]
# And get it
>>> (ref, reffrc), (test, tfrc) = c()
>>> print 'Shapes:', test.shape, ref.shape
# Plot the difference
>>> x=vcs.init()
>>> x.plot(test-ref)
# Wait for user to press return
>>> print "Press enter"
>>> sys.stdin.readline()



Getting Started With CDAT 33

Statistics Functions

CHAPTER 2 General 
Utilities : 
The genutil 
Package

The functions in the genutil package are written to be general 
purpose functions that are useful to a broader community and not 
restricted to climate data applications. 

2.1 Statistics Functions

Statistics functions available in this package include commonly 
used functions to compute correlation, covariance, auto-correlation, 
auto-covariance, lagged correlation, lagged covariance, mean 
absolute difference, root mean square, standard deviation, variance, 
geometric mean, median, percentiles and linear regression.

2.1.1 correlation

Returns the correlation between 2 slabs. By default on the first
dimension, centered and biased by default.

Usage:

result = correlation(x, y, weights=weightoptions, axis=axisoptions,
centered=centeredoptions, biased=biasedoptions)



General Utilities : The genutil Package

34 Getting Started with CDAT

Options:

weightoptions

default = None. If you want to compute the weighted correlation,
provide the weights here.

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

centeredoptions None | 0 | 1

default value = 1 removes the mean first. Set to 0 or None for
uncentered.

biasedoptions None | 0 | 1

default value = 1 returns biased statistic. If want to compute an
unbiased statistic pass anything but 1.

Example:

# Let us try an example where we want to look at a 
# variable ‘tas’ from the NCEP reanalysis and compute 
# some spatial statistics between data slices for time 
# periods from 1960-1970 and 1980-1990.
>>> import cdms
>>> from genutil import statistics
>>> f = cdms.open('tas.rnl_ncep.nc')
>>> ncep1 = f('tas',time=(‘1960-1-1’, ‘1970-1-1’, 'co'))
>>> ncep2 = f('tas',time=(‘1980-1-1’, ‘1990-1-1’, 'co'))
# We have the two time periods extracted. 
# Now let us compute the correlation. 
>>> cor = statistics.correlation(ncep1, ncep2,\
            axis=’xy’)
# We could compute the spatial correlation weighted by 
# area. To accomplish this we can use the ‘generate’ 
# option for weights. 
>>> wcor = statistics.correlation(ncep1, ncep2,\ 



Getting Started With CDAT 35

Statistics Functions

          weights=’generate’, axis='xy')

2.1.2 covariance

Returns the covariance between 2 slabs. By default on the first
dimension, centered and biased by default.

Usage:

cov = covariance(x, y, weights=weightoptions, axis=axisoptions,
centered=centeredoptions, biased=biasedoptions)

Options:

weightoptions

default = None. If you want to compute the weighted covariance,
provide the weights here.

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

centeredoptions None | 0 | 1

default value = 1 removes the mean first. Set to 0 or None for
uncentered.

biasedoptions None | 0 | 1

default value = 1 If want to compute an unbiased variance pass anything
but 1.



General Utilities : The genutil Package

36 Getting Started with CDAT

2.1.3 autocorrelation

Returns the autocorrelation of a slab at lag k centered,partial and
"biased" by default

Usage:

result = autocorrelation(x, lag=lagoptions, axis=axisoptions,
centered=centeredoptions, partial=partialoptions,
biased=biasedoptions, noloop=noloopoptions)

Options:

lagoptions None | n | (n1, n2, n3...) | [n1, n2, n3 ....]

default value = None  the maximum possible lags for specified axis is
used.You can pass an integer, list of integers, or tuple of integers. 

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

centeredoptions None | 0 | 1

default value = 1 removes the mean first. Set to 0 or None for
uncentered

partialoptions None | 0 | 1

default value = 1 uses only common time for means.

biasedoptions None | 0 | 1

default value = 1 computes the biased statistic. If want to compute an
unbiased statistic pass anything but 1.



Getting Started With CDAT 37

Statistics Functions

noloopoptions None | 0 | 1

default value = 0 computes statistic at all lags upto ‘lag’. If you set
noloop=1 statistic is computed at lag only (not up to lag). 

2.1.4 autocovariance

Returns the autocovariance of a slab. By default over the first
dimension,  centered, and partial.

Usage:

result = autocovariance(x, lag=lagoptions, axis=axisoptions,
centered=centeredoptions, partial=partialoptions,
noloop=noloopoptions)

Options:

lagoptions None | n | (n1, n2, n3...) | [n1, n2, n3 ....]

default value = None  the maximum possible lags for specified axis is
used.You can pass an integer, list of integers, or tuple of integers. 

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

centeredoptions None | 0 | 1

default value = 1 removes the mean first. Set to 0 or None for
uncentered

partialoptions None | 0 | 1

default value = 1 uses only common time for means.



General Utilities : The genutil Package

38 Getting Started with CDAT

noloopoptions None | 0 | 1

default value = 0 computes statistic at all lags upto ‘lag’. If you set
noloop=1 statistic is computed at lag only (not up to lag). 

2.1.5 laggedcorrelation

Returns the correlation between 2 slabs at lag k centered, partial and
"biased" by default.

Usage:

result = laggedcorrelation(x,y, lag=lagoptions, axis=axisoptions,
centered=centeredoptions, partial=partialoptions,
biased=biasedoptions, noloop=noloopoptions)

Returns value for x lags y by lag

Options:

lagoptions None | n | (n1, n2, n3...) | [n1, n2, n3 ....]

default value = None  the maximum possible lags for specified axis is
used.You can pass an integer, list of integers, or tuple of integers. 

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

centeredoptions

default value = 1 removes the mean first. Set to 0 or None for
uncentered

partialoptions None | 0 | 1



Getting Started With CDAT 39

Statistics Functions

default value = 1 uses only common time for means.

biasedoptions None | 0 | 1

default value = 1 If want to compute an unbiased variance pass anything
but 1.

noloopoptions None | 0 | 1

default value = 0 computes statistic at all lags upto ‘lag’. If you set
noloop=1 statistic is computed at lag only (not up to lag). 

2.1.6 laggedcovariance

Returns the covariance between 2 slabs at lag k centered and partial
by default

Usage: 

result = laggedcovariance(x, y, lag=lagoptions, axis=axisoptions,
centered=centeredoptions, partial=partialoptions,
noloop=noloopoptions)

Returns value for x lags y by lag (integer)

Options:

lagoptions None | n | (n1, n2, n3...) | [n1, n2, n3 ....]

default value = None  the maximum possible lags for specified axis is
used.You can pass an integer, list of integers, or tuple of integers. 

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.



General Utilities : The genutil Package

40 Getting Started with CDAT

centeredoptions

default value = 1 removes the mean first. Set to 0 or None for
uncentered

partialoptions None | 0 | 1

default value = 1 uses only common time for means.

noloopoptions None | 0 | 1

default value = 0 computes statistic at all lags upto ‘lag’. If you set
noloop=1 statistic is computed at lag only (not up to lag). 

2.1.7 meanabsdiff

Returns the mean absolute difference between 2 slabs x and y. By
default on the first dimension and centered

Usage:

result = meanabsdiff(x, y, weights=weightoptions, axis = axisoptions,
centered=centeredoptions)

Options:

weightoptions 

default = None returns equally weighted statistic. If you want to
compute the weighted statistic, provide weights here.

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.



Getting Started With CDAT 41

Statistics Functions

centeredoptions None | 0 | 1

default value = 1 removes the mean first. Set to 0 or None for
uncentered.

Example: 

# To compute the mean absolute difference between ncep1  
# and ncep2. 
>>> absd = statistics.meanabsdiff(ncep1, \ 

ncep2,axis='xy')

2.1.8 rms

Returns the root mean square difference between 2 slabs. By default
from a slab (on first dimension) “uncentered” and "biased" by default

Usage:

result = rms(x, y, weights=weightoptions, axis = axisoptions,
centered=centeredoptions, biased = biasedoptions)

Options:

weightoptions 

default = None returns equally weighted statistic. If you want to
compute the weighted statistic, provide weights here.

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

centeredoptions None | 0 | 1



General Utilities : The genutil Package

42 Getting Started with CDAT

default value = 0 returns uncentered statistic (same as None). To
remove the mean first (i.e centered statistic) set to 1. NOTE: Most other
statistic functions return a centered statistic by default.

biasedoptions None | 0 | 1

default value = 1 If want to compute an unbiased variance pass anything
but 1.

Example:

# To compute the "temporal" rms difference between the 
# two time periods
>>> rms = statistics.rms(ncep1, ncep2, axis='t')

2.1.9 std

Returns the standard deviation from a slab. By default  on first
dimension, centered, and biased.

Usage:

result = std(x, weights=weightoptions, axis = axisoptions,
centered=centeredoptions, biased = biasedoptions)

Options:

weightoptions 

If you want to compute the weighted statistic, provide weights here.

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

centeredoptions None | 0 | 1



Getting Started With CDAT 43

Statistics Functions

default value = 1 removes the mean first. Set to 0 or None for
uncentered.

biasedoptions None | 0 | 1

default value = 1 If want to compute an unbiased variance pass anything
but 1.

2.1.10 variance

Returns the variance from a slab. By default  on first dimension,
centered, and biased.

Usage:

result = variance(x, weights=weightoptions, axis = axisoptions,
centered=centeredoptions, biased = biasedoptions)

Options:

weightoptions 

If you want to compute the weighted variance, provide weights here.

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

centeredoptions None | 0 | 1

default value = 1 removes the mean first. Set to 0 or None for
uncentered.

biasedoptions None | 0 | 1



General Utilities : The genutil Package

44 Getting Started with CDAT

default value = 1 If want to compute an unbiased variance pass anything
but 1.

2.1.11 geometricmean

Returns the geometric mean over a sepcified axis.

Usage:

result = geometricmean(x, axis=axisoptions)

Options:

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

2.1.12 percentiles

Returns values at the defined percentiles for an array.

Usage:

result = percentiles(x, percentiles=percentilesoptions,
axis=axisoptions)

Options:

percentilesoptions A python list of values

Default = [50.] (the 50th percentile i.e the median value)             



Getting Started With CDAT 45

Statistics Functions

axisoptions 'x' | 'y' | 'z' | 't' | '(dimension_name)' | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

2.1.13 median

Returns the median value of an array.

Usage:

result = median(x, axis=axisoptions)

Options:

axisoptions 'x' | 'y' | 'z' | 't' | '(dimension_name)' | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to compute the statistic.

2.1.14 linearregression

Computes the linear regression of y over x or an axis. This function
returns Values of the slope and intercept, and optionally, Error
estimates and associated probability distributions for T-value (T-Test)
and F-value (for analysis of variance f) can be returned. You can
choose to return all these for either slope or intercept  or both (default
behaviour). For theoretical details, refer to “Statistical Methods in
Atmospheric Sciences” by Daniel S. Wilks, Academic Press, 1995.

Usage:



General Utilities : The genutil Package

46 Getting Started with CDAT

result = linearregression(y, axis=axisoptions, x=xvalues,
error=erroroptions, probability=probabilityoptions,
nointercept=nointerceptoptions, noslope=noslopeoptions)

Options:

axisoptions ‘x’ | ‘y’ | ‘z’ | ‘t’ | ‘(dimension_name)’ | 0 | 1 ... | n 

default value = 0. You can pass the name of the dimension or index
(integer value 0...n) over which you want to treat the array as the
dependent variable.

xvalues

default = None. You can pass an array of values that are to be used as
the independent axis x

nointerceptoptions None | 0 | 1

default = None. Setting to 0 or None means intercept calculations are
returned. To turn OFF the intercept computations set nointercept to 1.

noslopeoptions None | 0 | 1

default = None. Setting to None or 0 means slope calculations are
returned. To turn OFF the slope computations set noslope to 1.

erroroptions None | 0 | 1 | 2 | 3

default = None. If set to 0 or None, no associated errors are returned. 
If set to 1, the unadjusted standard error is returned. 
If set to 2, standard error returned. This standard error is adjusted   using
the centered autocorrelation of the residual.
If set to 3, standard error returned. The standard error here is adjusted
using the centered autocorrelation of the raw data (y).

probabilityoptions None | 0 | 1



Getting Started With CDAT 47

Statistics Functions

default = None. If set to 0 or None, no associated probabilities are
returned. Set this to 1to compute probabilities.
Note: Probabilities are returned only if erroroptions are set to one of 1,
2, or 3. If it is set to None or 0, then setting probabilityoptions has no
meaning.

What is returned?

The returned values depend on the combination of options you select.
If both slope and intercept are required, a tuple is returned for both
Value and optionally Error (or optionally associated Probabilities),
but single values (not tuples) are returned if only one set (slope OR
intercept) is required. See examples below for more details.

When erroroption = 1 (from description above for erroroptions you
know that means unadjusted standard error) and probabilityoption =
1, then the following are returned:

pt1 : The p-value for regression coefficient t-value. (With no adjustment
for standard error or critical t-value.)
None : There is only one p-value to be returned (pt1) but None is
returned to keep the length of the returned values consistent.
pf1 : The p-value for regression coefficient F-value (one-tailed).
pf2 : The p-value for regression coefficient F-value (two-tailed).

When erroroption = 2 or 3 (implying error adjustment using the
residual or the raw data and probabilityoption = 1, then the following
are returned: 

pt1 : The p-value for regression coefficient t-value.(With Effective
sample size adjustment for standard error of slope.
pt2 : The p-value for regression coefficient t-value.(With effective
sample size adjustment for standard error of slope and critical t-value.)
pf1 : The p-value for regression coefficient F-value (one-tailed).
pf2 : The p-value for regression coefficient F-value (two-tailed).



General Utilities : The genutil Package

48 Getting Started with CDAT

The values pt1 and pt2 are used to test the null hypothesis that b = 0
(i.e., y is independent of x). The values pf1 and pf2 are used to test
the null hypothesis that the regression is linear (goodness of linear
fit). For non-replicated values of y, the degrees of freedom are 1 and
n-2.

2.2 The xmgrace module

Nothing emphases the fact that CDAT is a collection of tools 
that can be extended by the user better than the xmgrace module. 
This module provides an interface to the popular Grace plotting 
utility (which you must have installed separately. Downloads and 
information are available from http://plasma-gate.weizmann.ac.il/
Grace ). 

The tutorials (see the document Climate Data Analysis Tools
(CDAT): A beginner’s Guide or the CDAT home page at http://
cdat.sf.net for details) include two tutorials that demonstrate the use
of python in getting full use out of XmGrace.

2.3 Additional convenience functions

2.3.1 minmax

Returns the minimum and maximum of a series of arrays/lists/tuples
(or a combination of these). You can combine list/tuples/... pretty
much any combination is allowed.

Examples of Use:

>>> import genutil
>>> s = range(7)



Getting Started With CDAT 49

Additional convenience functions

>>> genutil.minmax(s)
(0.0, 6.0)
>>> genutil.minmax([s,s])
(0.0, 6.0)
>>> genutil.minmax([[s,s*2],4.,[6.,7.,s]],\
                   [5.,7.,8,(6.,1.)])
(-7.0, 8.0)

2.3.2 grower

This function takes 2 transient variables and grows them to match
their axes.

Usage:

        x, y = grower(x, y, singleton=singletonoption)

Options:

singletonoption 0 | 1

Default = 0 If singletonoption is set to 1 then an error is raised if one of
the dims is not a singleton dimension.

2.3.3 rgb2str

Given r,g,b values, this function returns the closest 'name'

Example:

>>> print rgb2str([0,0,0])
'black'



General Utilities : The genutil Package

50 Getting Started with CDAT

2.3.4 str2rgb

Given a string representing a color name, this function the
corresponding r,g,b values (between 0 and 255). If the color name is
unknown, the function returns None,None,None

This is accomplished by looking in the /usr/X11R6/lib/X11/rgb.txt
file. If the file does not exist, then looks into the builtin dictionary

Examples:

>>> r, g, b = str2rgb('pink2') 
# returns: (238 , 169 , 184 )

>>> r, g, b = str2rgb('crappy') 
# returns: (None, None, None)



Getting Started With CDAT 51

Reading ASCII text files (package asciidata)

CHAPTER 3 User 
Contributed 
Packages

The packages described below are contributions submitted by
users. They are provided “as-is” and may not be maintained in the
future - unless they are extensively used and the user community
considers them critical.

3.1 Reading ASCII text files (package asciidata)

Package asciidata reads data from ASCII text files.

Reads text files written by such programs as spreadsheets, in which
data has been written as comma, tab, or space-separated numbers
with a header line that names the fields. Using the functions in
asciidata, you can convert these columns into Numerical arrays, with
control over the type/precision of these arrays. 

Example
>>> import asciidata
>>> time, pressure = 

asciidata.comma_separated(‘myfile.txt’)

For documentation type:

% pydoc -w asciidata



User Contributed Packages

52 Getting Started with CDAT

Scientific Python also contains a subpackage IO that contains other
useful facilities of this type. In particular there is a useful package for
reading Fortran-like formatted output.

3.2 Reading binary data (package binaryio)

Read and write Fortran unformatted i/o files. 

These are the files that you read and write in Fortran with statements
like read(7) or write(7). Such files have an unspecified format and are
platform and compiler dependent. They are NOT portable. Contrary
to popular opinion, they are NOT standard. The standard only
specifies their existence and behavior, not the details of their
implementation, and since there is no one obvious implementation,
Fortran compilers do vary. We suggest writing netcdf files instead,
using the facilities in cdms. 

For documentation type:

% pydoc -w binaryio. 

A similar package is in Scientific Python.

Example:
>>> import binaryio
>>> iunit = binaryio.bincreate('filename')
>>> binaryio.binwrite(iunit, some_array)  
#(up to 4 dimensions)
>>> binaryio.binclose(iunit)
>>> iunit = binaryio.binopen('filename')
>>> y = binaryio.binread(iunit, n, ...)   
# (1-4 dimensions)
>>> binaryio.binclose(iunit)

Note that reads and writes must be paired exactly. Errors will cause a
Fortran STOP that cannot be recovered from. You must know (or



Getting Started With CDAT 53

Explicit Orthonormal Functions (package eof)

have written earlier in the file) the sizes of each array.All data is
stored as 32-bit floats.

3.3 Explicit Orthonormal Functions (package 
eof)

Calculates Explicit Orthonormal Functions of either one
variable or two variables jointly. 

Having selected some data, the key call is to create an instance of
eof.Eof giving one or two arguments. In this example, a portion of the
variable ‘u’ is analyzed. After the result is returned, it is an object
with attributes containing such things as the principal components
and the percent of variance explained. Optional arguments are
available for controlling the subtraction of the mean from the data,
the weighting by latitude, and the number of components to compute.

This routine is computationally efficient, solving the problem in
either the normal space or the dual space in order to minimize
computations. Nonetheless, it is possible that this routine will require
substantial time and space if used on a large amount of data. This cost
is determined by the smaller of the number of time points and the
total number of space points.

For documentation type:

% pydoc -w eof.Eof

Example:
>>> import cdms, vcs
>>> from eof import Eof
>>> f=cdms.open('/home/dubois/clt.nc')
>>> u = f(‘u’, latitude=(-20,40), longitude=(60, 120))
>>> result = Eof(u)
>>> principal_components = result.principal_components



User Contributed Packages

54 Getting Started with CDAT

>>> print "Percent explained", result.percent_explained
>>> x=vcs.init()
>>> print len(principal_components)
>>> for y in principal_components:
>>>     x.isofill(y)
>>>     x.clear()
>>> u1 = v.subRegion(latitude=(amr[0], \
       amr[1], 'cc'), longitude=(amr[2], \
       amr[3],'cc'), order='xyt')
>>> result2 = Eof(u, number_of_components=4,\   
       mean_choice=12)
>>> print "Percent explained", result.percent_explained

3.4 Computing L-moments (package lmoments)

An interface to an L-moments library by J. R. M. Hosking.

This package is an interface to a Fortran library. The calling sequence
from Python differs from the Fortran convention. In general, output
and temporary arguments are not supplied in making the Python call,
and output arguments are returned as values of the function.

For documentation type: 

% pydoc -w lmoments 

to see list of functions. 

% pydoc -w lmoments.pelexp 

or other function name, for the particular. See also documentation for
Pyfort at pyfortran.sourceforge.net for further details on argument
conventions. If built from source, a file flmoments.txt appears which
gives the Python calling sequences.



Getting Started With CDAT 55

Regridding using package regridpack

3.5 Regridding using package regridpack

Interface to regridpack

For documentation type: 

% pydoc -w adamsregrid

This package contains a Python interface to the subroutine library
regridpack. 

Documentation online at cdat.sourceforge.net. See also
documentation for Pyfort at pyfortran.sourceforge.net for further
details on argument conventions.

3.6 Using Spherepack (package sphere)

Interface to Spherepack. This package contains a Python
interface to the subroutine library Spherepack. 

For documentation type: 

% pydoc -w sphere 

to see list of functions. 

Documentation online at cdat.sourceforge.net. See also
documentation for Pyfort at pyfortran.sourceforge.net for further
details on argument conventions. 



User Contributed Packages

56 Getting Started with CDAT

3.7 Computing Trends (package trends)

Computes variance estimate taking auto-correlation into
account.

Example: 
import reg_arl from trends
rneff, result, res, cxx, rxx = reg_arl (lag, x, y)
      integer lag Max lag for autocorrelations.
      real x(n1)    Independent variable
      real y(n1)    Dependent variable
      real, intent(out):: rneff          !Effective 

sample size
      real, intent(out):: result(31)     !Array of linear 

regression results
      real, intent(out):: res(n1)      !Residuals from 

linear regression
      real, intent(out):: cxx(1 + lag)   !Autocovariance 

function
      real, intent(out):: rxx(1 + lag)   

!Autocorrelation function

3.8 Reading data from an Oort file (package ort)

Read data from an Oort file.

Module ort contains one Fortran function, read1f:

Calling sequence:
>> import ort
>>> lon, lat, data, nr = ort.read1f(filename,  maxsta,\
           nvarbs, nlevels)

Input:
      character*(*) filename    ! name of the file to be read
! max number of stations (soundings) possible



Getting Started With CDAT 57

A grads like interface (package grads)

      integer maxsta   
! number of variables and P-levels in each sounding
      integer nvarbs, nlevels   

Output:
 ! longitudes / latitudes of the stations
      real, intent(out)::  lon(maxsta), lat(maxsta)            
! sounding data
      real , intent(out):: data(nvarbs, nlevels, maxsta)  
 ! actual number of stations with data
      integer , intent(out):: nr                         

3.9 A grads like interface (package grads)

The grads module supplies an interface to cdms that will be
familiar to users of GrADS. 

See the CDAT website for documentation.

3.10 Interface to the ngmath library. (package 
ngmath)

The ngmath library is a collection of interpolators and
approximatorsfor one-dimensional, two-dimensional and three-
dimensional data. The packages, which were obtained from NCAR,
are:

• natgrid - a two-dimensional random data interpolation package based on
Dave Watson's nngridr. NOT built by default in CDAT due to compile
problems on some platforms. Works on linux.

• dsgrid - a three-dimensional random data interpolator based on a simple
inverse distance weighting algorithm. 



User Contributed Packages

58 Getting Started with CDAT

• fitgrid - an interpolation package for one-dimensional and two-
dimensional gridded data based on Alan Cline's Fitpack. Fitpack uses
splines under tension to interpolate in one and two dimensions.  NOT IN
CDAT.

• csagrid - an approximation package for one-dimensional, two-
dimensional and three-dimensional random data based on David Fulker's
Splpack. csagrid uses cubic splines to calculate its approximation
function.



A
autocorrelation 33
autocovariance 37
averager 1

B
binaryio (package) 52

C
cdutil 1, 6
centroid function 11
correlation 33
covariance 35
criteriaarg 10
custom seasons 9

D
data, Fortran binary 52
data, Oort 56
data, reading ASCII 51

E
eof 53

F
Fortran-like I/O 52

G
Generating weights 6
geometricmean 44
grads (GrADS-like interface) 57
grads (module) 57
grower 49

L
laggedcorrelation 38
laggedcovariance 39
linearregression 45
lmoments 54

M
meanabsdiff 40
median 45
minmax 48



N
ngmath 57

O
Oort data 56
ort (package) 56

P
percentile 44
Pyfort 55

R
reading files written by Fortran 52
regridpack (package) 55
rgb2str 49
rms 41

S
Scientific Python 52
sphere (package) 55
spherepack module 55
std 42
str2rgb 50
supporting objects 13

T
Time averaging 8
times_tutorial.py 12
trends (package) 56

V
VariableConditioner 13
VariableConditioner Object 19
VariablesMatcher 12
VariablesMatcher Object. 23
variance 43
variance w/auto-correlation 56

W
WeightedGridMaker 13
WeightedGridMaker Object 16
WeightsMaker 13
WeightsMaker Object 13
writing Fortran unformatted files 52



X
xmgrace (package) 48


